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Abstract: Anovel strategy on combining variationalmode decomposition (VMD) and composite
weighted-scale sample entropy (CWSE) modified from composite multiscale entropy (CMSE)
is proposed to screen hepatocellular carcinoma (HCC) by measuring the terahertz (THz) pulse
signals of ten normal and ten HCC serums. Eight measured HCC specimens are negative
in serum biomarker alpha fetoprotein (AFP) determination. In CWSE, the time series with
weighted-scales are generated from the weighted average processing in the coarse-grained time
series corresponding to each scale of the CMSE algorithm. VMD served as a preprocessing
method was introduced into decomposing THz signal to obtain the mode functions of specific
bandwidth for identification. Final results reveal that more obtainable entropy values of CWSE
for recognition in comparison to those of CMSE on the basis of the rule of statistically significant
difference and effect size and also manifest the stronger discriminability than the traditional THz
parameters. This study provides a new potential auxiliary tool for diagnosis HCC and develops
the methodology on the discrimination for similar THz signals.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Liver cancer is a kind of high mortality malignant tumor, mainly containing hepatocellular
carcinoma (HCC), cholangiocarcinoma, and combined hepatocellular-cholangiocarcinoma. HCC
is the most common one among them and has become the fifth most common cancer worldwide
and the second frequent cause of cancer-related death in terms of World Health Organization [1].
Nowadays, with the advancement of medical technology, quite a few breakthrough works have
been achieved for diagnosis HCC. However, there are some defects in the clinical application.
In serological diagnosis, past decade has witnessed extensive clinical availability dependent
on serum biomarker including alpha fetoprotein (AFP), Golgi protein 73 (GP73), and des-
γ-carboxyprothrombin (DCP, also known as prothrombin-induced by vitamin K absence-II,
PIVKAII), etc. Nevertheless, the low sensitivity of AFP [2,3] may result in misdiagnosis.
Additionally, it is reported that the elevated AFP levels as an early alarm suggests the advent of
yolk sac cancer, liver metastasis from gastric cancer, testicular cancer and nasopharyngeal cancer
as well [4]. A higher sensitivity (69%) of GP73 is utilized to detect early-stage HCC and 57%
sensitivity to screen AFP-negative HCC [5]. With regard to DCP, roughly 30% AFP-negative
HCC can be identified as DCP-positive [3]. Therefore it is difficult to diagnose HCC. An effective
and reliable rapid screening method or auxiliary technique is urgently needed to identify HCC.
Terahertz (THz) region, defined as 0.1-10THz in the electromagnetic spectrum, provides

masses of information on rotational or vibrational transitions of molecules and intermolecular
vibrations. It is feasible and convenient to discriminate masses of materials by virtue of this
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unique property. Moreover, considering the intriguing nature of low energy and nonionizing
of THz radiation, THz spectroscopy has been made wide applicability in biomedical field [6].
More than that, THz system can currently be operated by unprofessional experts [7] with the
advances made in hardware and commercialization. However, the polar substances (i.e. water)
with high absorption of THz wave limits the generalized biomedical applications. Conversely, it
is this opposite mechanism that was substantially utilized to distinguish diverse types of tissues
[8–10], assess the living state of bacteria [11,12], and detect the PCR amplified DNA in aqueous
solution quantitatively [13] pursuant to different absorption of water content or of hydration and
bulk water. It should be noted that those above researches were conducted by using thin volume
aqueous solution in THz transmission spectroscopy or by employing reflection spectroscopy to
protect THz signal against immersion. Although the previous reports have described the THz
properties of whole blood, plasma, blood cells, thrombus and glucose [14–16] as well, the serious
possibility of specific spectral feature is usually not available for diagnostic purposes due to the
dominated factor by water. Obviously it is hard to identify HCC samples only dependent on
the nuance of spectral properties and whereupon a novel strategy combining THz technique is
strongly desired.
Until now, multifarious complexity measures of time series have been presented for under-

standing or solving the issues in the nonlinear systems [17]. Recent years have seen that some
entropy-based measures are powerful tools for quantifying the complexity of time series [18–21].
Sample entropy (SaEn) is a popular method among these entropy-based measures, which is
less dependent on the length of time series and remains relative consistency [20]. However,
some results indicated that these measures dependent on single-scale often failed to analyze
the complexity of long-term structure correctly due to the multiple scales of the structures in
time series from complex systems [22]. As regards this weakness, multiscale entropy (MSE)
[23] based on coarse-graining technique was put forward to solve various issues on long-term
complex time series [24–27]. Nevertheless, to reduce the estimated errors at large scale in entropy
measurements resulted in proposing composite multiscale entropy (CMSE) [28]. Their results
regarding the performance comparison between MSE and CMSE demonstrated the latter could
provide a more precise estimation of entropy and elevate the distinguishability as a latent tool for
identification.
Analogously, the entropy values of different scales reflecting some properties of the samples

can be regarded as an alternative approach for identification. THz signal can be seen as a type
of time series so that its complexity is apropos to be measured by SaEn. So the measured
material information in THz signal can be transformed into entropy values. Zhang et. al. [29]
discriminated the THz signals between fresh porcine skin and muscle tissues by employing CMSE
to measure the entropy, which showed the preponderance of CMSE method for identification
comparing with some familiar parameters (such as the specified amplitudes in time-domain or
frequency-domain, refractive index, and absorption coefficient at some frequencies).
In order to produce more distinguishable SaEns and enhance discrimination, the weight

coefficients within the data points were taken into account for further processing the coarse-
grained time series in CMSE or MSE. Thus the time series with weighted-scales are generated and
the following calculation steps are similar to those of CMSE. We named this modified algorithm
composite weighted-scale sample entropy (CWSE). Prior to that, variational mode decomposition
(VMD) technique served as a preprocessing tool was attempted to introduce to decompose THz
signal into several band-limited mode functions so as to select the significative components for
subsequent analysis. VMD with solid theoretical background and noise robustness [30] was
recently proposed for adaptive decomposing the signal into some components compactly around
the central frequencies so that its attractive characteristic has been widely applied in bearing fault
diagnosis [31], processing wind power series [32], and analysis and forecasting crude oil price
[33], etc. Normal and HCC serums are probably sensitive to dissimilar frequency components



Research Article Vol. 11, No. 9 / 1 September 2020 / Biomedical Optics Express 5047

within THz band, which is reasonable to introduce VMD to this experiment. In this work, THz
signals of normal and HCC serums (including eight AFP-negative samples) were acquired and
processed by means of VMD-CWSE. To prove the validity of VMD-CWSE, some traditional
THz parameters and VMD-CMSE were considered as comparison.

2. Material and methods

2.1. THz measurement

THz signals of samples were measured using a Picometrix T-ray 5000 fiber-coupled THz-TDS
system in reflection mode, which is displayed as the sketch in Fig. 1. The equipment mainly
consists of pulsed THz controller, transmitter and receiver heads, and computer with processing
software. The sample was placed on a quartz plate (55mm*55mm*20mm) with two centimeter
thickness so that it is thick enough to isolate the sample signal from the interference for signal of
back surface.

Fig. 1. Schematic sketch of the equipment

2.2. Sample preparation

Ten normal and ten HCC serum specimens (including eight of AFP-negativea), were provided by
clinical laboratory of Beijing Tongren Hospital, Capital Medical University. All the HCC patients
were diagnosed by imageological examination or biopsy. Chemiluminescent immunoassay was
used to detect AFP level of the serum. The AFP level of each patient is listed in Table 1. All
the samples were frozen in the refrigerator at -80°C for 3 months. They were transferred into
the cold storage at 4°C in the day before experiment. Prior to THz measurement, the samples
were fetched out and put under the room temperature for about 10 minutes. And next the serums
were inhaled 1mL by syringe and uniformly spread upon the prepared quartz plate, in terms of
labeled number in sequence. After each measurement, the dropper was employed to suck serum
and a piece of paper towel was used to soak the residual liquid gently. A new paper towel was
taken out to clean the surface after dropping 3∼4 drops of alcohol and pure water. Note that
these behaviors were cautious enough to guarantee highly precious phase to avoid corresponding
errors. Human serums measured in this experiment were approved by the Ethics Committee of
Beijing Tongren Hospital, Capital Medical University.
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Table 1. The AFP level of each patient a

HCC Normal

No. Age AFP(ng mL−1) Age AFP(ng mL−1)

1 63 1.82 56 2.69

2 66 4.24 52 5.26

3 56 3.67 54 5.59

4 66 2.59 65 4.29

5 50 2.68 56 3.40

6 47 105.52 62 2.80

7 47 2.30 52 5.44

8 53 140.68 58 3.78

9 36 3.09 56 1.96

10 51 7.97 64 4.02

aNote that AFP-negative refers to AFP level less than 20ng mL−1 [34].

2.3. Methods

2.3.1. Composite multiscale entropy (CMSE)

Given an one-dimensional time series {xi}, i=1 to N, y(s)k = {y
(s)
k,i , y

(s)
k,i+1, . . . , y

(s)
k,i+p} defined as

coarse-grained time series at scale s can be generated according to Eq. (1). By means of
dividing time series into non-overlapping windows of length s, coarse-grained time series is a
sequence consisting of the mean of data points within each window. SaEns are computed from
all coarse-grained time series and CMSE (Eq. (2)) is attained by calculating the averages of s
entropy values. The more detailed description about CMSE can be consulted in [28]. In this
study, the embedded dimension m=2, threshold value r= 0.15σ and scale numbers were assigned
20 in terms of the previous study [22,28,35], where σ is the standard deviation of the time series.

y(s)k,j =
1
s

js+k−1∑
i=(j−1)s+k

xi (1)

CMSE =
1
s

s∑
k=1

SaEn(y(s)k ,m, r) (2)

2.3.2. Composite weighted-scale entropy (CWSE)

Deriving from SaEn, the multiscale established in CWSE can be viewed as the weighted-scales
based on each corresponding scale of CMSE. Herein we took the scale factor 2 to illustrate
our modified method in constructing the time series of weighted-scales from schematic THz
signal. As shown in Fig. 2, the coarse-grained time series is produced, under which is the time
series with weighted-scales. It is obtained by performing weighted averaging in dividing the
coarse-grained time series into non-overlapping windows, where the number of windows is
dependent on weighted-scale factors. The weight coefficients of data points are represented by
the rate of change of amplitude ω (the ratio between amplitude difference and corresponding
time) between the point and the consecutive prior one while the weight coefficient of the first
point is reasonable to be ignored as its amplitude difference cannot be calculated. We select
this rate of change as weight coefficient in that its combination the characteristic for amplitude
and time delay of THz signal, which manifests the optical properties of the material to some
extent, is able to represent the weightage. Based on the kth coarse-grained time series of CMSE,
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the weighted average of data points could be obtained as the detailed expressions listed in
formula (3), where s and ss denote the scale and weighted-scale factors separately. The further
interpretation can be seen the pseudocode listed as follows. And final CWSE value is calculated
by defining as averaging the first k entropy values for the kth weighted-scale, expressed with
the Eq. (4)∼(6). Thus CWSE, with respect to scale and weighted-scale, has access to more
entropy values (several times the amount of CMSE) to supplement some certain information
useful. Herein the weighted-scales under each scale were set to 20 to facilitate comparison.

yy(kk,s)
k,j =

∑ ωk,jy(s)k,j

ωk,j
(3)

1 ≤ k ≤ s, 1 ≤ kk ≤ ss

Fig. 2. Schematic illustration for the generation on time series with weighted-scales at 2nd
scale and 2nd weighted scale.
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cwse = SaEn(yy(kk,s)
k , m, r, ω(k, j)) (4)

CWSE =
ks∑

ks=1

cwse(ks)
ks

(5)

ks =
kk∑

kk=1
kk (6)

2.3.3. Variational mode decomposition (VMD)

The essential of VMD is to seek the optimal solution for constrained variational model to
decompose the multi-component signal into K discrete number of specified mode functions
that are compact around corresponding center frequencies . The quadratic penalty term α that
controls bandwidth and Lagrangian multiplier λ were introduced to better solve the constrained
variational problem. A more detailed principle description of VMD algorithm is obtainable in
literature [30]. Generally speaking, the number of mode functions K and parameter α affect the
performance of VMD. However, there is no unified standard to determine K and α. In this paper,
K was set to 3 and the top two mode functions were chosen. The further demonstration can be
seen in the Appendix. Additionally, the next section will discuss the selection of α.

3. Results and discussion

THz time signals with 1000 data points for all the measured normal and tumor (HCC) samples are
shown in Fig. 3(a) and they are seriously overlapped and unrecognized seemingly. The common
time-domain parameters of Emax, Emin, Emax-Emin were applied to discriminate the normal and
HCC samples. The results were listed in Table 2, from which only Emin can manifest the marked
difference. Generally, in the statistically significant difference levels of t-test, p-value less than
0.05 denoting significant difference is different from p<0.01(very significant difference) and
p<0.001 (extremely significant difference) [36]. Furthermore, it is beneficial to use the effect size
of standardized difference between two means to understand how substantially different between
two groups. In compliance with the rule of thumb [37,38], its magnitude can be considered
as large and very large with d>0.80 and d>1.20 respectively, which means different levels of
practical importance. So the significant difference and large practical importance exist between
the normal and HCC samples with the aid of the parameter Emin.
Figure 3(b)∼(d) show the spectra of FFT amplitude (the effective band selected from 0.1to

0.6THz), refractive index and absorption coefficient of the normal and HCC samples. According
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Fig. 3. (a) THz signals for all the measured normal and tumor samples. (b) Average FFT
spectra, (c) refractive index, and (d) absorption coefficient for those normal and tumor
samples with error bars.

Table 2. Description of time-domain parameters for the normal and HCC samples

Time-domain parameter Emax Emin Emax - Emin

Normal samples
(mean± std) 0.2600± 0.0026 -0.1024± 0.0020 0.3624± 0.0027

HCC samples
(mean± std) 0.2609± 0.0047 -0.1005± 0.0017 0.3614± 0.0060

P value 0.639 0.036 0.613

Effect size (d) 0.213 1.014 0.230

to the results of t-test, there is no obvious difference (p>0.05) between these two groups of
samples. So it is unnecessary to consider effect size for this situation.

CMSE and CWSE were independently applied to identify them with the criteria of statistical
differences assessed by Student’s t-test. Effect size was further evaluated if significant difference
statistically. Profile curves on averaged CMSE as a function of scales are shown in Fig. 4(a).
It can be seen from the CMSE profiles that there is a sharp rise for the entropies of the first 6
scales and gradual descent for the remaining scales. And there is no significant difference in
CMSE between the normal and tumor group. Note that in this paper 83% confidence interval was
adopted as error bars [39]. The images of CWSE distribution for the average normal and tumor
sample groups are shown in Figs. 5(a) and 5(b), where it can be seen that entropies posterior to 5th
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scale and weighted-scale are mainly larger than those in the previous scales and weighted-scales
and the majority of entropies are larger than those of CMSE. It can be implied that the generated
weighted-scales, as a preprocessing tool, improved the complexity of signal, which is probably
pertinent to the enhanced distinctions between two groups. It should be note that in CWSE from
14th scale some undefined entropy values owing to the shortened data [40] are responsible for the
vacant p-values. Here binary image representation was pondered to exhibit the results for CWSE
due to the cumbersome representation of entropy curves for all scales. The binarization result of
CWSE, the area of the statistically significant difference is denoted with red, is also unable to
discriminate them [Fig. 4(b)].

Fig. 4. (a) The profile curve of CMSE and (b) binary image on p-values distribution of
CWSE for normal and tumor group.

Fig. 5. The images of CWSE distribution for the average (a) normal and (b) tumor sample
groups

THz signal can be seen as a synthesis composed of sub-signals with different frequency
components. We speculate decomposing the original signal into several parts could enhance the
differences and integrated signal potentially restricts the identification. Therefore it is necessary
to employ VMD to decompose the signals into mode functions with different bandwidths for
further analysis and yielding more expected entropies.

Herein an exhaustive search optimization was applied to seek the optimal parameter α without
any prior knowledge. The searching area is defined to initialize α=1200 as a center and 1000
as a radius with the interval of 10. Above t-test method is employed as the criterion to select
optimum α. It is worth noting that the searching area needs to expand to seek other possible
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available α in the case of the optimum α adjacent to the border. In the searching area, a total of
201 candidates α produce different mode functions to calculate CMSE and CWSE.

(A) The first mode function (M1)
Figure 6(a) displays the p-values distribution of all α for CMSE applied to M1(s), from
which it can be seen that there is no distinguishable entropy value in CMSE. Apropos of
CWSE, the top three α (α=360, 270, 280) were extracted in the approach of sorting α
by counting the total number of entropies that meet the criterion of t-test, as shown in
Figs. 6(b)–6(d), where the total amount of CWSE values in Fig. 6(b) is 33. It is sufficient to
exhibit the overwhelming superiority of CWSE, which benefits from substantial available
entropies of weighted-scales. Additionally, the magnitudes of effect sizes were large for
those significant differences. We select the case of α=360 at the 4th scale, including the
largest number of separated entropies, in above CWSE to obtain the corresponding curves
(Fig. 7). The p-values for significant differences and corresponding effect sizes are listed
in Table 3. It can be seen the distinguishable entropies from 10th to 20th scale, which
demonstrates the complexities of M1(s) between these two types of samples are different
statistically. Nevertheless, there is no case of very significant difference (p<0.01) and
very large effect size (d>1.2). In order to further validate the preponderance of VMD and
VMD-CWSE, especially for comparing with the parameter Emin, the binary image of effect
size and three-level thresholding image of p-values are presented in the discussion of the
second mode function.

(B) The second mode function (M2)

Fig. 6. The binary images on p-values distribution of (a) CMSE and (b)∼(d) CWSE for
α=360, 270, 280

Table 3. The p-value and effect size of CWSE in the weighted-scale from 10 to 20 in the case of
α=360

Weighted-scale 10 11 12 13 14 15 16 17 18 19 20

P-value 0.048 0.039 0.025 0.029 0.031 0.037 0.024 0.029 0.031 0.032 0.029

Effect size (d) 0.950 0.995 1.089 1.061 1.045 1.010 1.100 1.064 1.047 1.040 1.062

In the three-level thresholding image(Fig. 8), the area of p<0.01, 0.01≤p<0.05, and p≥0.05
is respectively denoted with yellow, red and blue. Comparing with M1, more discriminative
entropies either for CMSE or CWSE are gained from the global view of the p-values distribution.
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Fig. 7. The profile curves of CWSE at the 4th scale in the case of α=360.

Besides that, the very large effect sizes can be observed from the binary images (Fig. 9). Figure 10
shows the specific cases of above CMSE (α=390) and CWSE (α=1610, scale=7) that include the
largest amount of distinguishable entropies in the premise of p<0.01 and d>1.2. Tables 4 and 5
list the p-values for very significant differences and corresponding effect sizes.

Fig. 8. The three-level thresholding images on p-values distribution of (a) CMSE and
(b)∼(d) CWSE for α=1610, 1510, 1500

Table 4. The p-value and effect size of CMSE in the scale from 17 to 19 in the case of α=390

Scale 17 18 19

P-value 0.0075 0.0045 0.0086

Effect size (d) 1.347 1.450 1.318

In contrast to the previous results without executing VMD, either in CWSE or CMSE,
considerable improvement on identification for normal and tumor groups can be observed. This
just verifies above assumption that the sufficient discrimination was limited by the integrated raw
signals. The larger distinctions exist in the frequency components of M2(s) than those of M1(s)
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Fig. 9. Binary images on the distribution of effect sizes for (a) CMSE and (b)∼(d) CWSE
at α=1610, 1510, 1500

Fig. 10. The profile curves of (a) CMSE in α=390 and (b) CWSE at the 7th scale in
α=1610

Table 5. The p-value and effect size of CWSE in the weighted-scale from 8 to 16 in the case of
α=1610

Weighted-scale 8 9 10 11 12 13 14 15 16

P-value 0.0078 0.0093 0.0084 0.0066 0.0079 0.0048 0.0070 0.0080 0.0097

Effect size (d) 1.339 1.302 1.324 1.372 1.335 1.440 1.361 1.334 1.293
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between the measured normal and tumor specimens. This verifies VMD is an indispensable step
for knotty identification.

4. Conclusion

In this work, we have successfully distinguished the normal and HCC serum samples (including
AFP-negative) by adopting the novel strategy combined VMD and new proposed CWSE based on
measured THz reflection signals. This provides the motivation to be considered as the potential
auxiliary tool for diagnosis HCC (including AFP-negative) as it is hard to diagnose clinically. In
consequence of the large number of established weighted-scales, it is more possible for CWSE
than CMSE on recognition with the aid of VMD, which also suggests CWSE can be deemed
as a new index for identification. Furthermore, it is promising and attractive to adopt machine
learning tools based on the proposed strategy in the case of handling with complex identification
or relevant qualitative analysis.

Nevertheless, apropos of VMD, the approach for determining the bandwidth control parameter
(α) seemingly intricate. In spite of that, the powerfulness and potential of VMD are conspicuous.
As the purpose of this work is mainly concentrated on discrimination the normal and HCC serum
samples, the concise and precise methodology in determining the parameter will be investigated
in the future.

Appendix

The parameter α was tentatively assigned to 700, 1200, and 1800 for preliminary evaluation the
performance of VMD. Figure 11 exhibits these three mode functions (abbreviated M1, M2, M3
in turn) that represent different frequency components. It can be seen from Fig. 12 that different
components information are preserved in terms of the corresponding correlation coefficients and
energy ratios and M1 contains majority of original information. It can be observed the slight
differences for different α in these mode functions. Therefore it is necessary to determine the
apropos parameter α for identification. Nevertheless, the correlation coefficient and energy ratio
of M3 are the lowest among these mode functions and M3 maybe contain noise components. So
M1 and M2 were selected as the above discussion.
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Author queries 

(I) 

(II) 

(III) 
Fig. 11. (I) M1, (II) M2, and (III) M3 of normal and tumor samples at the alpha of (a) 700, (b) 1200, and (c) 1800 

Other corrections: 
Line105~106: A preposition “with” is added. “However, the polar substances (i.e. water) with high 
absorption of THz…” 
Line214(figures in the brackets): 55mm*55mm*20mm. 
Line349: by the growth rate  by the rate of change 
Line352: this growth rate this rate of change 
Line405: as with the detailed expressions (delete “with”) as with the detailed expressions  
Line542: with data points of 1000with 1000 data points 
Line827: the binary image 
Line828: p-values 
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Fig. 11. (I) M1, (II) M2, and (III) M3 of normal and tumor samples at the alpha of (a)
700, (b) 1200, and (c) 1800.

Fig. 12. (a) Correlation coefficient and (b) energy ratio for M1, M2, and M3 of normal and
tumor samples at the alpha of 700, 1200, and 1800.
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